Using Planning for a Per sonalized Security Agent

Mark Roberts and AdeleE. Howe and Indrajit Ray and Malgorzata Urbanska
Computer Science Dept., Colorado State University

Fort Collins, CO

80524, USA

email: {mroberts,howe,indrajit,urbansk@cs.colostate.edu

Abstract

The average home computer user needs help in reducing the
security risk of their home computer. We are working on an
alternative approach from current home security software in
which a software agent helps a user manage his/her secu-
rity risk. Planning is integral to the design of this agent in
several ways. First, planning can be used to make the under-
lying security model manageable by generating attack paths
to identify vulnerabilities that are not a problem for a par-
ticular user/home computer. Second, planning can be used
to identify interventions that can either avoid the vulnerabil-

ity or mitigate the damage should it occur. In both cases, a
central capability is that of generating alternative plans so
as to find as many possible ways to trigger the vulnerabil-
ity and to provide the user with options should the obvious
not be acceptable. We describe our security model and our
state-based approach to generating alternative plans. We show
that the state-based approach can generate more diverse plans
than a heuristic-based approach. However, the state-based ap-
proach sometimes generates this diversity with better quality
at higher search cost.

Planning for a Personalized Security Agent

The average home computer user has little understanding of

security and limited time to become educated and to take ac-
tion to protect their computers. Current security appreach
e.g., anti-virus software, OS patches, malware deteaters,
quire time, money and knowledge to be effectively used.
Moreover, the software is designed to be one-size-fits-all
which does not accommodate the different needs and pref-

home user’s decisions about security threats (e.g., percep
tions of risk and threats) (Byrne et al. 2012).

A home computer security agent would need to perform
all of the following tasks: monitor the user/system for new
behavior/state, incorporate new security knowledge from a
common security database, adapt to newly installed soft-
ware, prioritize its actions so as to block the most critical
vulnerabilities first, offer suggestions of actions to thseu
to support achieving his/her goals while not breaching secu
rity/privacy, and intervene independently to the extenmtt th
the user’s trust allows. Several of these tasks involve-plan
ning. In this paper, we describe how planning has been used
for security, how we have started to extend existing plagnin
techniques to support the security agent and our futuresplan
for further extensions.

The Personalized Security Agent

The two core goals behind our security agent are that its de-
sign should be motivated and supported by psychological

studies of users and that its behavior should be persodalize

to a particular user. In support of these goals, we have de-
veloped a new security model that is based in part on studies
from the literature and part on our on-going studies.

The Security Model: A Personalized Attack Graph

Researchers have modeled security for networked systems
using attack graphgPhillips and Swiler 1998; Sheyner et

al. 2002) andhttack treegMoore, Ellison, and Linger 2001;
Dewri et al. 2007). These models capture dependencies
among different system attributes such as vulnerabiliies

erences that have been observed in studies of home usermetwork connectivity and facilitate security risk anasyand

(Howe et al. 2012). For example, a study of 31 undergrad-
uates hypothetically installing software on a friend’'s ma-

chine concluded that many participants considered file- shar
ing software to be indispensable, even accounting for the
risks (Good et al. 2005).

Our research project takes a different approach: develop
an agent that can monitor security related activities on a
home computer and propose interventions to the user to
avoid or recover from security threats. The agent will be per

management. But these models focus on networked systems
rather than home computer users. We developed the Person-
alized Attack Graph (PAG) security model to characterize
the ways that &ome systernan be compromised and add
actions for the user as well as the attacker. The PAG is a
state-transition system that is instantiated with theestét
particular home computer and user. Figure 1 shows a PAG
for a Denial of Service (DoS) exploit that is a subtree of a
much larger PAG with 7 exploits, 25 user actions, 38 system

sonalized to the preferences and experience of the user asstates or actions (of which 11 are system vulnerabilities),

well as to the configuration of the home computer. The se- and 19 attack actions. A complete PAG consists of a set of
curity model underlying the agent is being developed based many such exploit subtrees and paths from leaf nodes to the
on psychological studies to identify factors that influeace  root represent potential attack paths.
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Figure 1: The Denial of Service personalized attack graple. @robabilities for nodes are given in parentheses.

Using Planning to I dentify Attack Scenarios

Previous research has shown how a planner can help ana-
lysts identify actions that lead to security breaches. Bodd
et al. (2005) built a mixed initiative planning system that
could identify potential vulnerabilities and countermaas

in cyber security for large organizations. Their PDDL (Fox
and Long 2003) domain model allowed them to produce “in-
sider subversion” plans of 40—60 steps. Their work showed
that automated planning could find novel attack scenarios.

Attack Graphs quickly become large, computationally ex-
pensive to analyze and hard for human analysts to under-
stand. Ghosh and Ghosh (2010) reduce the complexity of in-
stantiating an attack graph by iteratively applying a pmn
to eliminate unreachable attack scenarios. They use a PDDL
model similar to Boddy et al. and generate minimal attack
paths. To identify multiple paths that lead to the same sce-
nario, they modified the domain model by eliminating each
path (that is, commenting out an action or predicate) as it
was discovered. Obes et al. (2010) construct a large PDDL
model (1800 actions) from an attack graph and integrate the
planner into a penetration testing tool. Although they fun
an exponential increase in computation time as the number
of machines modeled increased, the time was still just 25
seconds to generate a plan involving 480 machines.

In codifying the PAG, we followed a similar approach to
the prior work by translating the PAG into PDDL (Roberts et
al. 2011). Figure 2 shows portions of the domain and prob-
lem description of the leftmost subtree given in Figure 1.
The full domain used for the experiments later contains 15
actions, 5 predicates, 18 initial objects, and 12 initiadsr
icates. Plans in this domain highlight potential paths that
can be exploited, which allows other portions of the agent
to prune and personalize the PAG and remove exploits that
cannot happen for a given system/user.

Generating Alternative Plans

In our agent, planning is used to prune the PAG to make it
more computationally manageable and to identify interven-
tions (key points to disrupt the plan). Because vulnertddli
can be exploited in many ways, it is essential to be able to
generate alternative plans. The prior research in usirgy cla
sical planning to generate attack paths (Boddy et al. 2005;

(define (domain attack-graph)
(:requirements :strips :equality
:di sjunctive-preconditions :typing )

(:types Qbj ect Action ExploitState software )
(:predicates (action-observed ?Action - Action)
(action-taken ?Action - Action)

(exploit-occurred ?Exploit - ExploitState)
(software-installed ?Software - software) )
(:action AttackAction_Fl ashFi| eConproni sed_5
:paraneters ( ?Action5 - Action )
:precondition (and (action-observed ?Action5 )
?Action5 AttackAction_Fl ashFil eConpromi sed_5 ) )

reffect
(and (action-taken AttackAction_Fl ashFil eConpromni sed_5) )))

(define (problem attack-graph-problentl)

(: domai n attack-graph)

(:objects
Expl oi t _Deni al Of Service_1 - ExploitState
AttackAction_Fl ashFi | eConproni sed_5 - Action
User Act i on_User Usi ngSoci al Medi a_7 - Action
ObeservedSt at e_CVE_2010_0187_Expl oited_2 - Action
User Acti on_User OpensFl ashFile_6 - Action

tinit
(action-observed AttackAction_Fl ashFi | eConpronised_5 )
(action-observed UserActi on_User Usi ngSoci al Media_7 )
(software-install ed Adobe_Fl ash_6_0_88_0)

: goal
(and (exploit-occurred Exploit_Denial Of Service_1) )))

PLANL

User Act i on_User Usi ngSoci al Medi a_7

User Acti on_User OpensFl ashFi |l e_6
ObeservedSt at e_CVE_2010_0187_Expl oi ted_2
Expl oi t _Deni al Of Service_1

PLAN2

User Act i on_User Br owsi ngl nt er net Cont ent _13

At t ackAct i on_PDFConpr oni sed_20

User Acti on_User LoadsPDFDocunent _21
(heservedState_CVE_2010_4091_OS_Expl oi ted_17
Expl oi t _Deni al Of Service_1
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User Acti on_User Browsi ngl nt er net Cont ent _13

At t ackAct i on_JavaAppW t hLongVMAr gunent _11

User Acti on_User St art sJavaWebst art Appl i cation_12
beservedSt at e_CVE_2008_3111_SunJavaMil ti pl e_Expl oi ted_8
Expl oi t _Deni al Of Service_1

Figure 2: Partial PDDL domain and problem descriptions
from the CVE-2010-0187 subtree of the DoS exploit fol-
lowed by the three solutions found by ITA*.

Ghosh and Ghosh 2012; Obes, Sarraute, and Richarte 2010)
either generated a single path or iteratively modified the do
main/problem description to influence the planner to pro-
duce new attack paths. We modify the algorithm.



Alternatives, Plan Diversity, and Plan Sets

A first step in generating alternatives is to define a metric
that quantifies the differences in plans. In earlier worls Sr
vastava et al. (2007) explore how to generate diverse plans
in a constraint-based planner. They use actions, statds, an
causal links to assess differences in plan diversity and find
that using an action-based distance usually providessiver
enough plans. More recently, Talamadupula et al. looked at

generating plans for execution with the best net benefit in !

a partial satisfaction planning framework (Talamaduptla e
al. 2010; Schermerhorn et al. 2009). While this work is not
strictly about generating alternatives, it does examirve t@o
evaluate multiple plans with respect to usefulness to a user

Given a planr, and a set of pland, and a distance metric
D, Coman and Miloz-Avila (2011) define:

Z D(m,7)

,m’ €Il

i 1)

During planning, this diversity metric is used in a weighted
evaluation function that is maximized by the planner:

hnew(7T> H) = (1 - Ol)hdiversity(ﬂ'a H) - ah(”)! (2)

wherehgiversiy(, IT) = RelativeDiversitymrejax, II), Trelax iS

the relaxed plan that discards delete effects, ahadlances
exploitation of the original heuristic and exploration obra
diverse plans. The original heuristic is subtracted bezaus
the authors want to minimizk but maximize the diversity.

The general distance metrib, in Equation 1 allows any
guantitative or qualitative distance metric to be subsgdu
in guiding search toward generating diverse plans. In par-
ticular, as the authors point out and shaw,can contain
domain-specific information that may be challenging to in-
corporate into the domain model.

Many of the planners from the recent International Plan-
ning Competition (IPC-2011) find better solutions over time
e.g., LAMA (Richter and Westphal 2010), which uses a
multi-queue local WA* search, and CBP (Fuentetaja 2011),
which uses branch-and-bound search. Such anytime plan-
ning algorithms and satisfying planners could be seen as
generating alternative solutions; each new solution is ef-
fectively an alternative that improves over the last. Intjee
nearly any planner could be modified to produce alterna-
tive solutions, though they may still have a bias toward pro-
gressively better solutions under the current IPC metdcs f
comparing planners. We base our approach on using a Tabu
list with restarts; Richter et al. (2010) recently showeat th
a weighted-A* algorithm performs better with restarts.

In general, all these approaches maximize a “Reward” or
“Diversity” metric after subtracting the plan cost. Thisca
have multiple drawbacks. If action costs swamp the reward,
then the search trajectory is dominated by the action cost. |
two plans have wildly different action costs AND different
rewards, then it is not clear how to select one over the other.
The state-based approach we propose avoids these issues.

Our Approach: ITA*

We implemented our own version of A* on top of the
LAMA-2008 planner. LAMA is based on FastDown-

RelativeDiversityr, IT) =

ward (Helmert 2006), and has been the best planner for
two IPCs. For our search, we turned off landmarks but con-
tinued to use preferred operators. When the search finds
a goal node, it caches eachtate, operator) pair that is

on the path to the solution into a data structure called
theTabusSt at eLi st . Itthen callsr est art Search(),
which clears the open and closed lists, resets the search
counts, and puts the initial state back into the open list.Whe
the search encounter$sate, operator) pair that is already

in the TabuSt at eLi st it adds the g-value of that node

to an arbitrarily high valuegConst ant , (such as 1000)
rather than the actual g-value. This ensures that thosesnode
are prioritized last in the A* open list and thus are very un-
likely to be pulled off next. We call this plannéfA*, for
Iterated Tabu A*.

We will show that ITA* supports generating diverse so-
lutions. However, it sometimes generates longer solutions
that may be padded with spurious actions as a result of the
state-based approach. We explore this trade-off in theieval
ation. Another issue is that this change, intentionallyaiia
dates the optimality of the search algorithm. However, com-
pleteness and soundness remain unaffected (space limita-
tions prohibit us from sketching these proofs). Interegtin
the mechanism we use to defer search on already found so-
lutions looks almost like an induced g-value plateau (Bento
et al. 2010); we hope to explore this in the future.

The Comparison Planner: DivA*

We also implemented our own version of the planner by Co-
man and Mi@ioz-Avila (2011) . To keep the comparison fair,
we maintain the use of A* and change only the heuristic
used during search. Similar to their planner, we leverage
the Dstapitity metric (Fox et al. 2006). Letr; and 7, be

the operator lists for two plans we want to compare. Then
Dstabitity = |(m1 \ m2)| + |(m2 \ 71)|. The symmetry of per-
forming the set difference in both directions is important i
order to account for plans that may be reversed.

We also sein = 0.7 because this was a setting used
in (Coman and Munoz-Avila 2011). But we made some
changes to their approach. First, we used the current solu-
tion to compare to the set of existing solutions found so far
rather thanr,..;... Also, we minimize the heuristic by sub-
tracting D from a large constant and then adding back the
original heuristic. These changes allowed us to maintain as
much similarity between the two planners as possible. We
call this planneDivA*, for DiversityA*.

Results on the Small PAG

ITA* can find unique solutions (alternative attack paths) fo
the small PAG domain generated from Figure 1. Figure 2
(bottom) shows the three solutions found by ITA* in a sin-
gle planning episode, which correspond to the three subtree
of the PAG. It found these solutions with 53, 46, and 25 node
expansions. The plan lengths for these solutions increase
from 4 to 5, so ITA* overcomes a key problem identified by
Ghosh and Ghosh (2010), that the planner always finds the
shortest path. For this problem, DivA* found a single path
but was unable to find new plans beyond that. We suspect



that either the weighted heuristic or the diversity meagire Compared to First

not well suited to small plans and domains such as this. n | Solns Unique| Perm Pad Remair
Rover 7 70 40 17 4 42

Depot 8 63 52 2 2 51

Results on Benchmark Domains Driverlog 9 | 80 49| 10 2 59

cybersec 25| 244 158 3 42 174

To show how this approach generalizes to other domains, transport 20| 200 200 0 0 180
and to support direct comparison to previous work, we also Rover 5 50 7 39 0 6
examined how well we can generate alternatives for domains Depot 4 39 13 10 0 25
from some IPC benchmarks. We compare to the three IPC3 Driver,og 8 80 31| 22 5 45
domains used in (Coman and Munoz-Avila 2011): Driver- Cybersec 24| 240 2] 128 2 o1
Log, Depot, and Rover. We also included the cybersec prob- transport 20| 200 9| 3 2 141

lems from IPC-2008 because these problems are the first se-
curity application that identified the gap in classical plan Table 1: Solution counts for IPC3, cybersec, and transport

ners not easily producing alternative solutions. Finailg, problems on ITA* (top) and DivA* (bottom).

include the seg-opt transport problems from IPC-2011 be-

cause it is a newer “logistics” style benchmark, makes sense DivA* TAx Compare to DivA*

in a mixed-initiative setting, and includes action costatth Domain | Solns Unq| Solns Ung| Perm  Pad  Alt
we can use to examine plan quality in later experiments. We Rover 50 7 70 40 5 0 35
found that the planners could solve more problems from the Depot 39 13 63 52 5 0 47
seg-opt track than the seq-sat track for the transport prob- DriverLog 80 31 80 49 11 0 38
lems. For our comparison to DivA*, we examine the search Cybersec| 240 42| 244 158 | 27 1 130
cost of ITA*, as well as the characteristics of the altenegti tansport| 200 91| 200 200 18 2 180

that are found, and how the solutions compare in quality.
Each planner was given 2 hours on a single processor with Table 2: Assessing solution overlap of DivA* and ITA* for

4 GB memory. The processes were run on 48 dual quad-core the IPC3 (top) and cybersec (bottom) problems.

Xeon 5450, 16 GB machines. The planners were run until

they found 10 solutions, or exhausted memory or time. Domain Problem | Min Max

I o
Depot 01 22 153 86.9 51.9
Depot 02 50 135 95.7 32.9
For which domains did I TA* produce unique solutions? Depot o7 606 4760 1857.8  1225.9
Table 1 shows solution counts for ITA* (top) and DivA* Depot 13 017 3143 17483 6974
. . . DriverLog 01 10 28 215 6.3
(bottom) for each domain. After the domain name, the first DriverLog 03 62 240 1763 66.9
column displays how many problems the planner solved. Driverlog 11 102 5949 31053  2154.1
The next column shows how many solutions to those prob- DriverLog 13 1531 35139 156147 134208
lems the planner generated. Some solutions, while unique, Depot o1 3 o4 549 31
were simply the original solution plus some spurious ac- Depot 02 19 974 130.7 281.9
tions; we called these solutiopsidded We also found that Depot 07 119 12042  1926.6  3397.1
some of the solutions were simply permutations of each Depot 13 31 110987 13999.4  34594.1
other. The 'Unique’ column shows how many solutions ex- DriverLog 01 8 26 102 5.4
ist after removing all padded and permuted solutions across Driver.og 03 14 233 57.2 78.2
all solutions in a problem. To give a sense of how frequently DriverLog 11 34 8242 9072 24484
each planner finds duplicate solutions, we comparefirste Driverlog 13 89 9rr7a 111560 29117

found solution to the remaining solutions found and show

the number of padded (‘Pad’ column) and permuted (‘Perm’ Table 3: Search cost for ITA* (top) and DivA* (bottom) on
column) solutions. The last column (‘Remain’) indicates selected IPC3 problems that both planners solved.

how many solutions differed meaningfully from that first so-

lution found. Note that these remaining solutions coulldl sti

be duplicates of each other. How closely do the solutions from ITA* match those
Clearly, ITA* produces alternative solutions though many of DivA*? To assess solution diversity, we examined the
solutions are duplicates. The IPC3 results show that ITA* overlap of the plans produced by both planners. Table 2 re-
produces permutations and some padded solutions. How- peats solution counts from Table 1 and shows solution over-
ever, in the transport domain ITA* produces a unique so- lap between the two planners in the last three columns. We
lution every time. DivA* solves less problems, but shows a took each unique DivA* solution and compared it to each
similar result of producing permuted and padded solutions. unique ITA* solution (that is, we used only those solutions
In the newer cybersec and transport domains, it produces from the ‘Ung’ columns). Solutions that were the same or
many more permutations. However, as we will show later, were permutations of each other were counted in the ‘Perm’
DivA* can produce solutions that are not found by ITA*,  column. Similarly, a padded ITA* solution is one that con-
suggesting that the approaches are complementary. tained any DivA* solution plus extra actions. Remaining so-



DivA* ITA* DivA* ITA*

Domain  Problem| n  Diversity n  Diversity n min “w o n min o o
Depot 01| 10 2| 10 7 02 3 271 323.7 41.0| 10 271 377.6 56.3
Depot 02| 10 12 | 10 10 04 2 922 1148.0 226.0| 10 921 10745 139.7|
Depot 07| 10 8| 10 10 06 2 406 411.0 5.0/ 10 416 511.1 81.5
Depot 13 9 12 | 10 14 08 6 614 836.0 147.5| 10 459 668.1  144.7

DriverLog 03| 10 1] 10 2 10 6 733 899.7 136.1| 10 700 816.1 88.5

DriverLog 07 | 10 5| 10 17 12 4 2490 32535 447.4 10 2490 30714 394.1

DriverLog 09 | 10 32| 10 22 14 8 900 1120.2  258.1| 10 551 861.5 155.2

DriverLog 10 | 10 14 | 10 20 16 | 10 2093 26014 319.8 10 1878 23879 273.4

DriverLog 11| 10 12 | 10 24 18 2 1367 1506.0 139.0 10 1010 1495.0 189.4

DriverLog 13 | 10 31 9 29 20 4 537 597.5 43.2| 10 509 640.0 101.0
Rover 05| 10 6| 10 10

Table 5: Comparing the quality of DivA* and ITA* solutions
Table 4: Comparing the diversity usif@s;qpii, Of DIVA* from the transport problems.
and ITA* solutions from the IPC3 and cybersec problems.

. . of the plan, where the cost is a sum of the road distances plus
lutions were counted in the ‘Alt’ column. Clearly, ITA* does 1 for each unload/load action.

produce alternatives to those given by DivA*. Table 5 summarizes the results of running VAL on the
solutions discovered by DivA* and ITA* for selected prob-
For runsthat produce unique solutions, how does search lems in transport. For each planner, we list the number of

cost changefor each new solution?  As a proxy for search solutions found, the minimum quality value obtained, the
cost, we examined the time to solution in the number of average and standard deviation of the quality of the solu-
nodes examined. We show a representative sample in Ta-tions. The ‘Min’ and 1’ columns reveal that neither planner
ble 3. The results demonstrate that the search cost can varydominates, again suggesting that these two approaches are
greatly between problems as well as between restarts of both complimentary.

planners. DivA* tends to find plans more quickly. This was a

surprising result because one might think thatdheeight Future Work

WOUId_ Ieao_l search into non-productive parts of the s.ef'”Ch Our goal is to build a security agent to help home computer
tree since it effectively lowers the usefulness of the @a§i  sers. Our future work will focus on improving alternative

heuristic estimate. The variance on cost can be quite high plan generation, employing planning for security interven

which suggests th_at both planners can be leveraged to Pro-tions, and incorporating plan quality metrics during therpl
duce even more diverse plan sets. ning process.

How do the solutions compare in terms of diversity?
Finally, we examined how the two planners compared ac-
cording the Diversity (Coman and Munoz-Avila 2011) and
Dtavitity (FOX et al. 2006) metrics:

Better Alternative Plan Generation ITA* lacks some of

the sophisticated enhancements present in other planners
and is somewhat limited in what it can accomplish. We
would like to improve the performance of ITA* by incorpo-

Z Dirapitity (7, 1) rating_many oft_he enhancements from recent state-of4the-a

- stability {7 planning techniques (deferred evaluation, landmarksroth

Diversity(TT) = == EHIH\X(\HFI) 3) heuristics, etc.). Similarly we could modify other plansier
s to output alternative solutions. This would allow us to make

. . a broader comparison concerning search efficiency.
Table 4 shows selected problems from the domains; in par- P g 4

ticular, we do not show any problem for which Diversit)

was zero using DivA* (ITA* had no problems for which this ~ Backjumping / Backtracking It would be straightfor-
was true). In the older IPC3 problems, ITA* has a better ward to modify the algorithm to perform chronological
(higher) diversity metric than DivA* for all but three prob-  backtracking or heuristically-guided backjumping inste&
lems. ITA* dominates with much higher diversity in the cy-  iterated restarts. For the motivating security domain, e« b
bersec and transport domains (not shown for space reasons)lieve this might increase the search cost without producing
many more solutions since each solution tends to be isolated
from other solutions. But for other domains, it may lead to

How do the solutions compare in terms of plan qual- lower search cost for alternative solutions.

ity? We examined the quality of the plans as measured by
VAL (Strathclyde Planning Group 2010); VAL is the pro-
gram used to validate solutions in the IPCs. We assessedPlanning for Interventions In the security domain, we
the transport task because ITA* found 10 unique solutions identified paths leading to exploits. But blocking thesénpat
for each problem and because this domain uses action costs.is central to a successful security agent. The next step is to
The goal is to move packages whitenimizingthe total cost provide the planner with intervention actions that can stop



viable attack path by negating states that lead to an exploit

four quality metrics: the likelihood of an attack occurring

So its preconditions are any states that are on the path to anthe cost of damage, the cost of intervening, and the utifity o

exploit and its effect negates that specific state. Exangdles
intervention actions include: cleaning attachments ofra pa
ticular type, updating a software version or installing a-fir
wall. Good intervention actions are those that block mldtip
vulnerabilities, are low cost to execute and do not interfer
with the user’s needs or preferences.

Incorporating Negations During Search The interven-
tion action negates important details in the problem space;
thus, the intervention planner will need to reason about neg
ative effects. A significant issue in searching for intetticam
plans is that many state-of-the-art heuristics in the plagn
literature ignore the delete list to estimate the value ¢épo

tial solutions; this is alternatively called ignoring néga
effects or ignoring negations. Although multi-valued esico
ings do capture cycles of negative interactions between ac-
tions (Helmert 2006), the translation can still ignore some
negative effects. But including all negations can be compu-
tationally intractable. Richter examined one way to inelud
negated effects into landmarks (Richter and Westphal 2010)
She found that recompiling the planning task usinglilfe
compilation (Haslum 2009) — a compilation that increas-
ingly includes delete effects by making them add effects us-
ing a set of additional actions — generated much more accu-

rate heuristics and decreased search cost. However, she als

found that the overall computational cost for searchindpwit
this improved heuristic was unjustified (Richter 2010). So
we will further study the trade-off of using the computation
ally tractable relaxed heuristic against including negai
that improve search and look for alternative ways to inte-
grate negations. We plan to explore both landmarks (Richter

the specific activity to the user. We believe that the final im-
plementation of ITA* would be more effective by including
quality information during search.

Many planners examine plan cost/quality while searching
using a modified heuristic to include this information; we
plan to leverage such work whenever possible. But most ex-
isting planning systems generate solutions that minirmoze (
maximize) the solution according tosingle criterion. We
are interested in finding alternatives that may vary with re-
spect tomultiple evaluation metrics that may not be easily
comparable. In the security domain, we want to see paths
leading to attacks regardless of whether such paths may be
more costly or less probable than other paths. The question
that we have with respect to including metrics during search
is how we can guide the search to produce alternatives that
force variation in the metric rather than minimization of th
metric. A well-understood way to manage multiple objec-
tives that may have vastly different criteria is to generate
solutions along a pareto-optimal front as opposed to asing|
metric (Ehrgott 2008). We also plan to explore this multi-
objective search technique in comparing and searching for
alternatives.

Conclusions

As our first step in applying planning to our security do-
main, we have translated the PAG into PDDL and gener-
ated alternative attack paths using ITA*. We have shown that
ITA* produces unique solutions to both the PAG example
and some IPC benchmarks. When compared to DivA*, ITA*
can find alternative solutions that haven't already been dis

and Westphal 2010) and londexes (Chen, Zhao, and Zhang covered. The search cost for both planners varies as search

2007) as ways to selectively include negations.

Digunctive Goal Search The search for both attacks and
interventions requires that we identify a valid attack patt

progresses. For the transport domain from IPC-2011, ITA*
consistently produces lower quality solutions than DivA*,
but it can occasionally find better solutions. Finally, ITA*
is well suited to produce alternative solutions for the secu

then seek to negate that path. This can be represented as distity application that was our original motivation as well as

junctive goals in the form of A v (mA A (I1 V I3 V I3))),
whereA is some attack goal and, I, and/; are interven-

the security domain that identified this open question; ITA*
identified an additional 130 alternative solutions in the cy

tions that eliminate the attack and are discovered and addedbersec domain (see Table 2).

during search. If the disjunctive goals are added at tofd leve

The home computer security agent application offers both

of the iterated search, we can then search for alternatives opportunities and challenges to extending classical jotann

and interventions within the same planning episode and rely
on ITA* to produce alternative solutions automatically- Al
though disjunctive goals are semantically equivalent & th

more standard conjunctive representation, they may be com-

putationally different in the search for alternatives.

Plan Quality Since each alternative solution represents
a potential security breach/intervention, the securitgrag

Planning is integral to the construction and usage of a secu-
rity model, the Personalized Attack Graph. Planning is also
integral to the decision making the agent will need to do to

avoid or mitigate security threats.
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